Online Appendix for Drinking Water Contamination and Home
Prices: Evidence from California

This Online Appendix provides supporting materials, additional technical details, and robust-
ness checks for “Drinking Water Contamination and Home Prices: Evidence from California.”
Appendix Section Al draws on Rosen (1974) to provide a theoretical framework for the em-
pirical results presented in this study. Appendix Section A2 documents coverage of nitrate
contamination issues in California from media and policymakers, establishing the salience of
this issue for local residents and homebuyers. Appendix Section A3 provides a brief descrip-
tion of the Borusyak et al. (2024) imputation estimator used in the main analysis. Appendix
Section A4 provides exact coefficients from the event-study results presented in Figure 3 from
the main text and details the construction of CWS-level home price measures from ZIP-code
level data. Appendix Section A5 demonstrates robustness of the main results to alternative
estimators. Finally, Appendix Section A6 presents leave-one-out estimation results confirming

that the findings from the main text are not driven by outlier water systems.

A1 Theoretical Framework

Following Rosen (1974), we can model home prices as reflecting the value of a set of bundled

characteristics:

P=f(S,N,E) (A1)

Where P represents the transactions price of a given home, S denotes structural characteristics
(square footage, bedrooms, etc.), N represents neighborhood attributes (schools, crime rates),
and E captures environmental amenities including drinking water quality.

In the hedonic equilibrium, the marginal price of an attribute such as clean drinking water



equals the marginal willingness to pay (MWTP) of the marginal buyer for that attribute. We

can denote the marginal willingness to pay for water quality WQ as MWTP(WQ) and write:

OP
OWQ

= MWTP(WQ) (A.2)

In this setting, public notifications (PN) cause consumers to update their beliefs about per-
ceived water quality from WQ, to WQ1, with WQ1 < WQy, for homes served by the affected
CWS. Assuming consumers were unaware of contamination issues prior to notification (or un-
derestimated the severity of those issues by assuming that they had been resolved), the infor-
mation provided by the PN causes consumers to revise their assessment of the amenity value
of housing located in the affected CWS. At the new equilibrium post-PN, the equilibrium price
for housing will be lower, reflecting both reduced buyer willingness to pay and the response of
sellers to this demand shift. This represents a local partial-equilibrium around the prevailing
hedonic price schedule.

The static difference-in-differences (DiD) coefficient reported in the main results represents

the average change in home prices associated with a notification:

E[AP|Notification] = f(S,N,WQ1) — f(S, N, WQy) (A3)

Year fixed effects absorb common market shocks, and CWS fixed effects absorb time-invariant
unobserved amenities and baseline differences across systems. Under the parallel trends as-
sumption, this represents the causal effect of new information about water contamination.
From the perspective of the Rosen model, this effect may represent the capitalized value of
clean drinking water, subject to the assumption that the composition of transacted homes does
not shift, and that PNs do not induce supply shocks or spatial spillovers. Importantly, because
MWTP varies across consumers and PNs may induce sorting across locations, the estimated
price effects represent equilibrium responses that combine changes in both the composition
of buyers and their willingness to pay, rather than necessarily identifying the MWTP of any
particular consumer type.

Finally, this overall framework relies on the assumption that Tier 1 nitrate PNs produce



salient shifts in perceived water quality, which is reasonable given the acute health risks such
contamination poses, and the attention that nitrate contamination has received from media and

policymakers as described in Appendix Section A2 below.

A2 Nitrate Contamination in California

The fight for clean water in California is a fight for justice. No Californian should be exposed
to toxins or hazardous waste because of where they live, and no child should get sick because
of where he or she goes to school. Now is the time to invest in drinking and wastewater
systems that can keep our communities healthy and safe.

— CA State Senator Bill Monning and Tom Steyer (Monning and Steyer, 2017)

Nitrate contamination from agricultural fertilizers and animal waste has long stood as one of
California’s most pressing water quality challenges, affecting millions of residents across the
state. In 2008, the severity of nitrate contamination concerns in California prompted legislation
requiring the State Water Board to conduct a wide-ranging investigation into the causes and
costs of nitrate contamination, as well as potential remediation options. The ensuing investiga-
tion generated an 8-part series of reports, conducted jointly with the University of California
(Groundwater Nitrate Project, 2012). The authors of this study noted that nitrate contamination
was a widespread issue throughout California and that “nitrate problems will likely worsen for
several decades.”

A 2020 study by the Environmental Working Group (EWG) found that nitrate contamina-
tion issues had not abated in the intervening years following the Groundwater Nitrate Project.
The EWG report found that elevated levels of nitrates have been reported in CWS across Cal-
ifornia and that contamination levels have risen over the past two decades for many of these
systems (Schechinger, 2020). A report by Becker (2024) for CalMatters described nitrate contam-
ination as one of the most pervasive water quality issues facing the state. This report noted that
unsafe drinking water has left residents of rural areas affected by water contamination, “afraid
to drink tap water, or even bathe their children in it, relying on bottled water instead.” An
article by Del Real (2019) in The New York Times described the extent of nitrate contamination

issues in California’s agricultural areas, and echoed the findings from Becker (2024), noting that
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many residents relied on purchasing bottled water. High-profile op-eds discussing state water
quality issues published in Los Angeles Times (Leslie, 2017) and The Mercury News (Monning
and Steyer, 2017) also specifically cite nitrate contamination as a key concern.

As noted in Appendix Section Al above, for nitrate PNs to affect home prices, local resi-
dents and homebuyers must be cognizant of such notifications. In this context, the attention
that nitrate contamination issues have generated among policymakers, the media, and local
residents of affected areas underscores the salience of these issues for prospective homebuyers.
The adverse health consequences of drinking contaminated water, and the costs and incon-
venience of mitigation efforts such as purchasing bottled water, suggest that PNs regarding
nitrates represent clear disamenities for prospective homebuyers, which may be capitalized
into home prices. More generally, the widespread nature of nitrate contamination issues in
California, and the disruptions they cause for affected communities, underscores the policy

relevance of this study.

A3 Imputation Estimator

The results reported in the main text are derived using the imputation estimator developed by
Borusyak et al. (2024), referred to below as the BJS estimator. This estimator addresses concerns
about the estimation of event-study and difference-in-differences (DiD)-style research designs
via Ordinary Least Squares (OLS). In this section, I provide a brief summary of important fea-
tures of the BJS estimator.

BJS estimation is a two-stage process in which we start by using not-yet and never-treated
observations to estimate fixed effects ¢,, and ~; and generate predicted values of counterfac-
tual Y,,+(0) for treated observations. We then construct treatment effects estimates as weighted
average of differences between Y and Y for treated observations. As with any estimator in
this setting, credible causal inference with the imputation-based approach requires an identify-
ing assumption about the counterfactual trajectory of Y in the absence of treatment. Mapping
the standard parallel trends assumption to the imputation setting, we are assuming that the
predicted values th(()) reflect the trend treated CWS would have followed in absence of treat-

ment. In the event-study results presented in Figure 3 in the main text, I report the p-value



from a joint significance test of the pre-treatment event time coefficients, which allows us to

assess the plausibility of this assumption.

A4 Construction of CWS-Level Home Price Measures

I gather data on community water systems (CWS) from California’s State Water Resources Con-
trol Board. These records include GIS files with geographic boundaries for CWS service areas,
in addition to CWS-level records on total service population (California State Water Resources
Control Board, 2025). ZIP-code level ZHVI home price records are merged with CWS-level
service boundaries using ZIP Code Tabulation Areas (ZCTA) provided by the Census Bureau.
In conjunction with the ZCTA boundary files, I also gather Census data on ZCTA population
counts. The primary outcome variable in my analysis is CWS-level weighted average home
values. In order to make the ZIP-code level home values provided by the ZHVI representative
of home prices across a given CWS (which may span multiple ZIP codes), I adopt an approach
that allows me to account for both the geographic overlap of ZCTAs and CWS as well as the
population distribution across ZCTAs.

I construct a weighted average home value for each CWS by first conducting a spatial merge
of all ZCTAs and CWS. For each intersecting ZCTA j and CWS £ pair, I calculate the propor-
tion of the total CWS area that is covered by that matched ZCTA, denoted f;;, given by the

following;:

_ Area(ZCTA; N CW Sy)

Tin = Area(CW Sy) Aad)

So that f;;, represents the geographic coverage fraction of CWS k by ZCTA j. To ensure proper
weighting across multiple ZCTAs that may intersect with a single CWS, I normalize these cov-

erage fractions:

fik
w9’ = J (A5)
ik Zj’ fj’k

Where w?, is the normalized geographic weight for ZCTA j and CWS k, ensuring that weights

sum to 1 for each CWS, accounting for the presence of other ZCTAs j that intersect with CWS



k in addition to ZCTA j.
Using the ZCTA-level population data, I am able to construct weights based on both geo-
graphic intersection and population. Denoting the population of ZCTA j as Poij CTA T calcu-

late a population-adjusted weight as:

& X Pop?CTA
Wi = L - ZCTA (A.6)
> (firk x Pop5 @t )
The final CWS-level home price measures are calculated as:
HP]? = wi’ x HP (A7)
J
HPY? = wh? x HP; (A.8)

J
Where H P; is the ZHVI home price for ZCTA j. Finally, as an additional check on the robust-
ness of the results from the main text, I use ZCTA boundary definitions for both 2000 and 2010
because ZCTA boundary definitions may change over time.

In the results presented in Table A1 below, I show that the baseline event-study results pre-
sented in the main text are robust to variations in the specific approach taken to constructing
weighted-average home prices. The first column of Table A1l reports estimates corresponding
to the event-study and static DiD depicted results in Figure 3 of the main text. The estimates
here use population-weighted average home values HP} "’ and 2010-vintage ZCTA boundary
definitions. In Column (2) I estimate the same event-study using HP;j ~ with 2010-vintage
boundary definitions and no population weighting; finally, in Column (3) I show results us-
ing HP"* with 2000-vintage ZCTA boundary definitions. Across all three specifications, the
results are not meaningfully altered by the choice of ZCTA boundary vintage or weighting ap-
proach, with static difference-in-differences estimates that are within ~0.5 percentage points of
one another and event-study coefficients that likewise follow similar patterns in the pre- and

post-periods.



A5 Robustness to Alternative Estimator Selection

In this section, I employ two alternative, modern DiD estimators in order to demonstrate the
robustness of the results presented in the main text. I use both the OLS-based strategy pro-
posed by Wooldridge (2021) as well as the two-stage estimation strategy proposed by Gardner
et al. (2025). The Wooldridge estimator uses extended two-way fixed effects to allow for hetero-
geneous treatment effects across cohorts and time periods. Similar to the imputation estimator
used in the main text, the two-stage approach by Gardner et al. first estimates fixed effects using
only untreated/not-yet-treated observations, then computes treatment effects from residual-
ized outcomes. Both of these estimators are designed to be robust to concerns about traditional
OLS-based estimation for the research design employed in this study, where treatment timing
is staggered and treatment effects may be heterogeneous.

I present the results from using these alternative specifications in Table A2 below. In the
first column, I report the baseline estimate from Appendix Table Al as a comparison point.
In Column (2), I show the results from estimating the same specification using the Gardner
two-stage approach, while in Column (3), I show the results obtained using the Wooldridge
estimator. Across all three columns, the estimates are qualitatively very similar, indicating
that the conclusions derived from the baseline specification employed in the main text are not

sensitive to the choice of estimator.

A6 Leave-One-Out Estimation

In this section, I demonstrate that the results presented in the main text are not driven by outlier
CWS by conducting a leave-one-out cross-validation exercise. This robustness check provides
an assessment of whether any individual CWS exerts outsize influence on the baseline aggre-
gate treatment effect estimate. I iterate over each CWS that is included in the analysis sample
and which experiences at least one nitrate PN over the sample time period. In each iteration,
I remove a given CWS from the analysis sample and re-estimate the static DiD coefficient re-
ported in Appendix Table A1, Column (1). By sequentially excluding each treated unit from

the estimation sample, this procedure allows me to examine the stability of the main findings



across different sample compositions.

After iterating over all CWS that have experienced a nitrate PN, I am able to construct and
plot the distribution of estimated static DiD coefficients and their corresponding t-statistics.
These distributions provide visual evidence of the degree of sensitivity of the main findings to
sample composition. If a small number of outlier CWS with larger-than-average responses to
nitrate PNs are driving the results, then we would expect this distribution to exhibit dispersion
or skewness in iterations where those influential CWS are excluded. Such a pattern would raise
concerns about the generalizability of the findings. However, if most CWS tend to experience
similar home price declines following PNs, suggesting a systematic market response to such
notifications, then we would expect a more concentrated distribution centered around the full-
sample estimate.

The results from this robustness exercise are plotted in Figure A1. I show the distribution of
estimated static DiD coefficients in Panel A, and the distribution of t-statistics in Panel B. In the
tirst panel, the distribution of treatment effect estimates is highly concentrated, with point es-
timates clustered around the coefficient of -0.0576 reported in Appendix Table A1, Column (1),
with an average value of -0.058. This stability across sample compositions provides evidence
that the documented relationship between nitrate PNs and home prices represents a system-
atic pattern rather than an artifact of outlier CWS. Likewise, the distribution of t-statistics is
centered around -2.68, consistently remaining well beyond the conventional two-sided 95%
confidence threshold plotted in gray at 1.96. This consistency of statistical significance across
all iterations further demonstrates that the documented effects are not dependent on the inclu-
sion of any particular CWS in the estimation sample, thereby strengthening confidence in both

the internal validity and external validity of the main findings.
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Table A1: Baseline Event-Study Results from Figure 3 of Main Text and Robustness of Results to
Alternative Mappings of CWS and ZCTAs

1) () 3)
Panel A: Static DiD Estimates
Nitrate Public Notification -0.0576*** -0.0548** -0.0605***
(0.02) (0.02) (0.02)
N 2875 2875 2875
Panel B: Event-Study Estimates
t=-2 -0.0066 -0.0091 -0.0146
(0.01) (0.01) (0.02)
t=-1 -0.0041 -0.0069 -0.0134
(0.02) (0.02) (0.02)
t=20 -0.0154* -0.0169* -0.0209**
(0.01) (0.01) (0.01)
t=1 -0.0392*** -0.0401*** -0.0462***
(0.01) (0.01) (0.01)
t=2 -0.0504*** -0.0506™** -0.0566**
(0.02) (0.02) (0.02)
t=3 -0.0401** -0.0396** -0.0447**
(0.02) (0.02) (0.02)
t=4 -0.0356 -0.0342 -0.0399*
(0.02) (0.02) (0.02)
N 2409 2409 2409
ZCTA Boundary Definition Year 2010 2010 2000
Population Weights Yes No No
P-Value from Pre-Trends Test 0.83 0.80 0.64

Notes: Data is aggregated to the CWS-year level for the years 2000 to 2024. All results are generated using the robust
BJS imputation estimator described in Appendix Section A3 with standard errors clustered at the CWS level. The
p-value of a joint significance test of the pre-treatment coefficients is reported in the bottom row of the table. The
estimates from Column (1) correspond to the baseline event-study output reported in Figure 3 of the main text. In
Column (1), weighted average home prices at the CWS level are calculated using 2010-vintage ZCTA boundaries
and weighting by ZCTA-level population; in Column (2), weighted averages are constructed using 2010-vintage
ZCTA boundaries and no population weights; in Column (3), weighted average home prices are calculated using
2000-vintage ZCTA boundaries and no population weights.

***p<0.01, **p<0.05, *p<0.10
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Table A2: Robustness of Results to Alternative Estimators

BJS Gardner Wooldridge
Treatment Effect -0.0576*** -0.0688*** -0.0576**
(0.0215) (0.0244) (0.0263)
N 2875 2875 2875

Notes: Data is aggregated to the CWS-year level for the years 2000 to 2024. Column (1) reports the baseline static
DiD estimate reported in Appendix Table Al, Column (1) above, derived using the BJS estimator described in
Appendix Section A3. In Columns (2) and (3), I generate comparable static DiD estimates based on the Gardner et
al. estimator and the Wooldridge estimator, respectively, both of which are briefly described in Appendix Section
Ab5. All specifications include CWS and year fixed effects with standard errors clustered at the CWS level.
***p<0.01, "*p<0.05, *p<0.10
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Figure A1: Leave-One-Out Estimation Results

Panel A: Distribution of Leave-One-Out Estimated Treatment Effects

1 -09 -08 -07 -06 -05 -04 -03 —-02 -0l

Treatment Effect Estimate
Median coefficient estimate of —0.058 denoted with black line.

Panel B: Distribution of Leave-One-Out t-Statistics

t—Statistic

Median t—statistic of —2.68 denoted with black line. Gray line at x = —1.96 denotes two—sided
5% significance level.
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